|
Journal of Lie Theory 12 (2002), No. 2, 535--538 Copyright Heldermann Verlag 2002 Two Observations on Irreducible Representations of Groups Jorge Galindo Dep. de Matemáticas, Universidad Jaume I, 8029-AP Castellón, Spain Pierre de la Harpe Section de Mathématiques, Université de Genève, 1211 Genève 24, Switzerland Thierry Vust Section de Mathématiques, Université de Genève, 1211 Genève 24, Switzerland For an irreducible representation of a connected affine algebraic group G in a vector space V of dimension at least 2, it is shown that the intersection of any orbit π(G)x (with x in V) and any hyperplane of V is non-empty. The question is raised to decide whether an analogous fact holds for irreducible continuous representations of connected compact groups, for example of SU(2). Keywords: Irreducible representations, orbits, algebraic groups, compact groups. MSC: 22E45 [ Fulltext-pdf (143 KB)] |