Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Lie Theory 12 (2002), No. 2, 423--447
Copyright Heldermann Verlag 2002



Complete Filtered Lie Algebras over a Vector Space of Dimension Two

Thomas W. Judson
Dept. of Mathematics and Computer Science, University of Puget Sound, 1500 North Warner Street, Tacoma, WA 98416, U.S.A.



There may exist many non-isomorphic complete filtered Lie algebras with the same graded algebra. In our previous paper "Complete filtered Lie algebras and the Spencer cohomology", J. Algebra 125 (1989) 66--109, we found elements in the Spencer cohomology that determined all complete filtered Lie algebras having certain graded algebra provided that obstructions do not exist in the cohomology at higher levels. In this paper we use the Spencer cohomology to classify all graded and filtered algebras over a real vector space of dimension two.

[ Fulltext-pdf  (223  KB)]