|
Journal for Geometry and Graphics 28 (2024), No. 1, 001--018 Copyright by the authors licensed under CC BY SA 4.0 The Flat Translation Surfaces in the 3-Dimensional Lorentz Heisenberg Group H3 Rafik Medjati ENP Oran - Maurice AUDIN (Ex ENSET), El-Mnaouer, Oran, Algeria rafik.medjati@enp-oran.dz Said Taifour ENP Oran - Maurice AUDIN (Ex ENSET), El-Mnaouer, Oran, Algeria said.taifur@enp-oran.dz Hanifi Zoubir ENP Oran - Maurice AUDIN (Ex ENSET), El-Mnaouer, Oran, Algeria zoubirhanifi@yahoo.fr [Abstract-pdf] In the Lorentz-Heisenberg space $\mathbb{H}_3$ endowed with flat metric $g_3$, a translation surface is parametrized by $r(x,y) = \gamma_1(x) * \gamma_2(y)$, where $\gamma_1$ and $\gamma_2$ are two planar curves lying in planes, which are not orthogonal. In this article, we classify translation surfaces in $\mathbb{H}_3$, with vanishing Gaussian curvature in Lorentz-Heisenberg space $\mathbb{H}_3$. Keywords: Gaussian curvature, Lorentz Heisenberg space, first fundamental form, second fundamental form, translation surface, flat surface. MSC: 53A10; 53C30, 53C50, 53C42. [ Fulltext-pdf (361 KB)] |