|
Journal for Geometry and Graphics 20 (2016), No. 1, 023--032 Copyright Heldermann Verlag 2016 Finding the Middle Ground Bisectors in p-Geometry Carlos Bosch Dep. de Matemáticas, Instituto Tecnológico Autónomo, Rio Hondo #1, Col. Tizapán - San Angel, 01080 México, México bosch@itam.mx Marta Cabo Dep. de Matemáticas, Instituto Tecnológico Autónomo, Rio Hondo #1, Col. Tizapán - San Angel, 01080 México, México Nelia Charalambous Dep. de Matemáticas, Instituto Tecnológico Autónomo, Rio Hondo #1, Col. Tizapán - San Angel, 01080 México, México César L. García Dep. de Matemáticas, Instituto Tecnológico Autónomo, Rio Hondo #1, Col. Tizapán - San Angel, 01080 México, México Claudia Gómez-Wulschner Dep. de Matemáticas, Instituto Tecnológico Autónomo, Rio Hondo #1, Col. Tizapán - San Angel, 01080 México, México Guillermo Pastor Dep. de Matemáticas, Instituto Tecnológico Autónomo, Rio Hondo #1, Col. Tizapán - San Angel, 01080 México, México Araceli Reyes Dep. de Matemáticas, Instituto Tecnológico Autónomo, Rio Hondo #1, Col. Tizapán - San Angel, 01080 México, México Bisectors of line segments are quite simple geometrical objects. Despite their simplicity, they have many surprising and useful properties. As metric objects, the shape of bisectors depends upon the metric considered. This article discusses geometric properties of bisectors of line segments in the plane, when the bisectors are taken with respect to the usual p-norms. Although the shape of bisectors changes as their defining p-norm varies, it is shown that the bisectors share exactly three points (or infinitely many points in exceptional cases determined by the orientation of the base line segment). Keywords: Taxicab norm, p-bisector, p-norm. MSC: 51M05; 51B20 [ Fulltext-pdf (306 KB)] |