© 2025 Heldermann Verlag Journal of Convex Analysis 32 (2025) 961–974

A. Boulkhemair

Jean Leray Math. Lab., UFR-Sciences and Techniques, Nantes, France <code>boulkhemair-a@univ-nantes.fr</code>

A. Chakib

Applied Mathematics Team, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco chakib.fstbm@gmail.com

A. Sadik

 Jean Leray Math. Lab., UFR-Sciences and Techniques, Nantes, France
Applied Mathematics Team, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco
sadik.fstbm@gmail.com

On Some Uniform Estimates of Gauge Functions with Respect to Domains

We establish uniform estimates and properties of gauge functions for domains Ω_{ε} , $\varepsilon \in [0, 1]$, defined by the Minkowski sum $\Omega_{\varepsilon} = \Omega_0 + \varepsilon \Omega$ where Ω_0 and Ω are convex and bounded subsets of \mathbb{R}^n . These estimates are in fact needed when one deals with shape derivatives in PDE-constrained shape optimization problems using this Minkowski sum as a deformation as it is done in a recent paper of A. Boulkhemair and A. Chakib [On a shape derivative formula with respect to convex domains, J. Convex Analysis 21/1 (2014) 67–87] for example. We first show that this class of domains Ω_{ε} satisfies the so-called uniform ball property which is equivalent to the positiveness of its reach. Then, we establish the said uniform estimates on the gauge function of Ω_{ε} and its gradient as well as its hessian, with respect to the parameter ε .

Keywords: Convex domains, gauge functions, support functions, Minkowski sum, uniform ball condition, reach condition, uniform estimates.

MSC: 52A07; 52A30, 53A05, 49Q10.