© 2025 Heldermann Verlag Journal of Convex Analysis 32 (2025) 789–800

B. Ricceri

Department of Mathematics and Informatics, University of Catania, Italy $\tt ricceri@dmi.unict.it$

On the Infimum of the Upper Envelope of Certain Families of Functions

Given a topological space X, an interval $I \subseteq \mathbf{R}$ and five continuous functions $\varphi, \psi, \omega : X \to \mathbf{R}, \alpha, \beta : I \to \mathbf{R}$, we are interested in the infimum of the function $\Phi : X \to] - \infty, +\infty]$ defined by

$$\Phi(x) = \sup_{\lambda \in I} (\alpha(\lambda)\varphi(x) + \beta(\lambda)\psi(x)) + \omega(x) \,.$$

Using a recent minimax theorem of the author [see Minimax theorems in a fully non-convex setting, J. Nonlinear Var. Analysis 3 (2019) 45-52], we build a general scheme which provides the exact value of $\inf_X \Phi$ for a large class of functions Φ . When additional compactness conditions are satisfied, our scheme provides also the existence of (explicitly detected) functions $\gamma, \eta : X \to \mathbf{R}$ such that, for some $\tilde{x} \in X$, one has

$$\gamma(\tilde{x})\varphi(\tilde{x}) + \eta(\tilde{x})\psi(\tilde{x}) + \omega(\tilde{x}) = \inf_{x \in X} (\gamma(\tilde{x})\varphi(x) + \eta(\tilde{x})\psi(x) + \omega(x)) \,.$$

Keywords: Infimum, minimax, inf-connectdness, inf-compactness.

MSC: 49J35, 90C47.