© 2024 Heldermann Verlag Journal of Convex Analysis 31 (2024) 779–786

B. Ricceri

Department of Mathematics and Informatics, University of Catania, Catania, Italy

A Property of Strictly Convex Functions which Differ from each other by a Constant on the Boundary of their Domain

We prove, in particular, the following result: Let E be a reflexive real Banach space and let $C \subset E$ be a closed convex set, with non-empty interior, whose boundary is sequentially weakly closed and non-convex. Then, for every function $\varphi : \partial C \to \mathbf{R}$ and for every convex set $S \subseteq E^*$ dense in E^* , there exists $\tilde{\gamma} \in S$ having the following property: for every strictly convex lower semicontinuous function $J : C \to \mathbf{R}$, Gâteaux differentiable in $\operatorname{int}(C)$, such that $J_{|\partial C} - \varphi$ is constant in ∂C and $\lim_{\|x\|\to+\infty} (J(x)/\|x\|) = +\infty$ if C is unbounded, $\tilde{\gamma}$ is an algebraically interior point of $J'(\operatorname{int}(C))$ (with respect to E^*).

Keywords: Strictly convex function, derivative, minimax.

MSC: 52A41, 26B25, 46G05, 47J05.