© 2024 Heldermann Verlag Journal of Convex Analysis 31 (2024) 749–760

X. Nie

School of Mathematical Sciences, Hebei Normal University, Shijiazhuang, P.R.China $\verb|xiangxiangnie@126.com||$

L. Yuan

School of Mathematical Sciences, Hebei Normal University, Shijiazhuang, P.R.China lpyuan@hebtu.edu.cn

T. Zamfirescu

School of Mathematical Sciences, Hebei Normal University, Shijiazhuang, P.R.China
Mathematical Institute, Roumanian Academy, Bucharest, Roumania
tuzamfirescu@gmail.com

On Poidge-Convexity

Let \mathcal{F} be a family of sets in \mathbb{R}^d (always $d \geq 2$). A set $M \subset \mathbb{R}^d$ is called \mathcal{F} convex, if for any pair of distinct points $x, y \in M$, there is a set $F \in \mathcal{F}$ such that $x, y \in F$ and $F \subset M$. We obtain the poidge-convexity, when \mathcal{F} consists of all unions $\{x\} \cup \sigma$, called *poidges*, where x is a point, σ a line-segment, and $\operatorname{conv}(\{x\} \cup \sigma)$ a right triangle. In this paper we first present several new results on the poidge-convexity of various sets, such as unions of line-segments, fans, cones and cylinders, complements of some given sets and not simply connected sets. Then, we investigate the poidge-convex completion of compact convex sets, trying to determine the minimal number of points necessary to be added to make them poidge-convex.

Keywords: Poidge-convexity, unions of line-segments, complements, poidge-convex completion.

MSC: 52A01, 52A37.