|
Journal of Convex Analysis 31 (2024), No. 2, 497--523 Copyright Heldermann Verlag 2024 Finite Element Approximation of the Hardy Constant Francesco Della Pietra Dip. di Matematica e Applicazioni "R. Caccioppoli", Università degli Studi di Napoli "Federico II", Napoli, Italy f.dellapietra@unina.it Giovanni Fantuzzi Dept. of Mathematics, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Germany giovanni.fantuzzi@fau.de Liviu I. Ignat (1) Institute of Mathematics "Simion Stoilow", Romanian Academy, Bucharest, Romania (2) Research Institute of the University of Bucharest ICUB, Bucharest, Romania liviu.ignat@gmail.com Alba Lia Masiello Dip. di Matematica e Applicazioni "R. Caccioppoli", Università degli Studi di Napoli "Federico II", Napoli, Italy albalia.masiello@unina.it Gloria Paoli Dip. di Matematica e Applicazioni "R. Caccioppoli", Università degli Studi di Napoli "Federico II", Napoli, Italy gloria.paoli@unina.it Enrique Zuazua (1) Dept. of Mathematics, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Germany (2) Chair of Computational Mathematics, Fundación Deusto, Bilbao, Spain (3) Departamento de Matemáticas, Universidad Autónoma de Madrid, Madrid, Spain enrique.zuazua@fau.de [Abstract-pdf] We consider finite element approximations to the optimal constant for the Hardy inequality with exponent $p=2$ in bounded domains of dimension $n=1$ or $n\geq 3$. For finite element spaces of piecewise linear and continuous functions on a mesh of size $h$, we prove that the approximate Hardy constant converges to the optimal Hardy constant at a rate proportional to $1/|\log h|^2$. This result holds in dimension $n=1$, in any dimension $n\geq 3$ if the domain is the unit ball and the finite element discretization exploits the rotational symmetry of the problem, and in dimension $n=3$ for general finite element discretizations of the unit ball. In the first two cases, our estimates show excellent quantitative agreement with values of the discrete Hardy constant obtained computationally. Keywords: Hardy inequality, Hardy constant, finite element method. MSC: 46E35, 65N30. [ Fulltext-pdf (509 KB)] for subscribers only. |