Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Convex Analysis 30 (2023), No. 1, 065--080
Copyright Heldermann Verlag 2023



On Special Partitions of [0,1] and Lineability within Families of Bounded Variation Functions

Luis Bernal-González
Dep. de Análisis Matemático, Facultad de Matemáticas, Inst. de Matemáticas Antonio de Castro Brzezicki, Universidad de Sevilla, Spain
lbernal@us.es

Juan Fernández-Sánchez
Universidad de Almería, Spain
juanfernandez@ual.es

Juan B. Seoane-Sepulveda
Inst. de Matemática Interdisciplinar, Dep. de Análisis Matemático y Matemática Aplicada, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Spain
jseoane@ucm.es

Wolfgang Trutschnig
Dept. of Mathematics, University of Salzburg, Austria
wolfgang@trutschnig.net



We show that there exist large algebraic structures (vector spaces, algebras, closed subspaces, etc.) formed entirely (except for 0), on one hand, by singular, nowhere monotonic functions on [0,1] and, on the other hand, by absolutely continuous nowhere monotonic functions. Several tools, of independent interest, related to obtaining special partitions of R into uncountable collections will be provided and used. The results obtained in this note are either new or improved versions of already existing ones.

Keywords: Lineability, spaceability, bounded variation function, singular function, absolutely continuous function, nowhere monotonic function.

MSC: 15A03, 46B87, 26A45, 26B30.

[ Fulltext-pdf  (162  KB)] for subscribers only.