|
Journal of Convex Analysis 28 (2021), No. 2, 599--612 Copyright Heldermann Verlag 2021 From Linear to Convex Jürgen Jost Max-Planck-Institut für Mathematik, Leipzig, Germany jjost@mis.mpg.de Umberto Mosco has developed a powerful theory of variational convergence for convex functionals and sets, or with a different terminology, for Dirichlet forms. Such forms are defined on Hilbert spaces. In this contribution, I shall describe how his theory can be extended from Hilbert spaces to metric spaces that themselves satisfy suitable convexity properties. Keywords: Mosco convergence, Gamma convergence, Dirichlet form, convex functional, generalized harmonic mapping, nonpositive curvature, weak convergence, regularity theory. MSC: 58E20, 49J45, 54A20, 31C25, 46E36, 54E35. [ Fulltext-pdf (123 KB)] for subscribers only. |