|
Journal of Convex Analysis 28 (2021), No. 2, 457--470 Copyright Heldermann Verlag 2021 An Extension Result for Generalised Special Functions of Bounded Deformation Filippo Cagnetti Department of Mathematics, University of Sussex, Brighton, United Kingdom f.cagnetti@sussex.ac.uk Antonin Chambolle CMAP -- CNRS, Ecole Polytechnique, Palaiseau, France antonin.chambolle@cmap.polytechnique.fr Matteo Perugini Institut für numerische und angewandte Mathematik, Westf.-Wilhelms-Universität, Münster, Germany matteo.perugini@uni-muenster.de Lucia Scardia Department of Mathematics, Heriot-Watt University, Edinburgh, United Kingdom l.scardia@hw.ac.uk [Abstract-pdf] We show an extension result for generalised special functions of bounded deformation ($GSBD^p$, for every $p>1$) and any dimension $n\geq 2$. The proof is based on a recent result of F.\,Cagnetti, A.\,Chambolle, and L.\,Scardia, showing that a function $u$ in $GSBD^p$ with a ``small'' jump set coincides with a $W^{1,p}$ function, up to a small set whose perimeter and volume are controlled by the size of the jump of $u$. Keywords: Free-discontinuity problems, functions of bounded deformation, Griffith's energy. MSC: 49Q20, 70G75, 74R10. [ Fulltext-pdf (141 KB)] for subscribers only. |