Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Convex Analysis 27 (2020), No. 2, 487--508
Copyright Heldermann Verlag 2020



On Formulae for the Ioffe Geometric Subdifferential of a Supremum Function

Pedro Pérez-Aros
Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile
pedro.perez@uoh.cl

David Salas
Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile
and: Centro de Modelamiento Matemático, Universidad de Chile, Santiago, Chile
david.salas@uoh.cl

Emilio Vilches
Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile
emilio.vilches@uoh.cl



We study the first order variational behavior of the supremum of an arbitrary family of lower semicontinuous functions over a weakly compactly generated β-smooth Banach space. In this context, we present new upper-estimations for the viscosity subdifferential and the Ioffe geometric subdifferential.

Keywords: Supremum function, Ioffe geometric subdifferential, beta-smooth property, first order analysis, fuzzy calculus.

MSC: 49J52, 49J53, 49Q10.

[ Fulltext-pdf  (174  KB)] for subscribers only.