|
Journal of Convex Analysis 27 (2020), No. 1, 237--276 Copyright Heldermann Verlag 2020 Various Lipschitz-Like Properties for Functions and Sets. II: Subdifferential and Normal Characterizations Rafael Correa Dep. de Ingeniería Matemática, Universidad de Chile, Santiago, Chile and: Universidad de O'Higgins, Rancagua, Chile rcorrea@dim.uchile.cl Pedro Gajardo Dep. de Matemática, Universidad Técnica Federico Santa María, Valparaíso, Chile pedro.gajardo@usm.cl Lionel Thibault Institut Montpelliérain A. Grothendieck, Université de Montpellier, France lionel.thibault@umontpellier.fr The present paper is a continuation of our previous article: Various Lipschitz-like properties of functions and sets. I: Directional derivative and tangential characterizations [SIAM J. Optim. 20(4) (2010) 1766--1785]. Here we provide diverse subdifferential and normal characterizations of K-directionally Lipschitzian functions and sets for bounded sets K of a Banach space. Keywords: K-directionally Lipschitzian function, epi-Lipschitzian set, compactly epi-Lipschitzian set, subdifferential, normal cone, multidirectional mean value inequality. MSC: 26A24, 49J52; 28B20, 47L07. [ Fulltext-pdf (248 KB)] for subscribers only. |