|
Journal of Convex Analysis 26 (2019), No. 4, 1297--1320 Copyright Heldermann Verlag 2019 Convex Bodies Associated to Tensor Norms Maite Fernández-Unzueta Centro de Investigación en Matemáticas, A.P. 402 Guanajuato, Mexico maite@cimat.mx Luisa F. Higueras-Montano Centro de Investigación en Matemáticas, A.P. 402 Guanajuato, Mexico fher@cimat.mx [Abstract-pdf] We determine when a convex body in $\mathbb{R}^d$ is the closed unit ball of a reasonable crossnorm on $\mathbb{R}^{d_1}\otimes\cdots \otimes\mathbb{R}^{d_l},$ $d=d_1\cdots d_l.$ We call these convex bodies ``tensorial bodies''. We prove that, among them, the only ellipsoids are the closed unit balls of Hilbert tensor products of Euclidean spaces. It is also proved that linear isomorphisms on $\mathbb{R}^{d_1}\otimes\cdots \otimes \mathbb{R}^{d_l}$ preserving decomposable vectors map tensorial bodies into tensorial bodies. This leads us to define a Banach-Mazur type distance between them, and to prove that there exists a Banach-Mazur type compactum of tensorial bodies. Keywords: Convex body, tensor norm, Minkowski space, Banach-Mazur distance, tensor product of convex sets, linear mappings on tensor spaces. MSC: 46M05, 52A21, 46N10, 15A69 [ Fulltext-pdf (190 KB)] for subscribers only. |