Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Convex Analysis 26 (2019), No. 4, 1297--1320
Copyright Heldermann Verlag 2019



Convex Bodies Associated to Tensor Norms

Maite Fernández-Unzueta
Centro de Investigación en Matemáticas, A.P. 402 Guanajuato, Mexico
maite@cimat.mx

Luisa F. Higueras-Montano
Centro de Investigación en Matemáticas, A.P. 402 Guanajuato, Mexico
fher@cimat.mx



[Abstract-pdf]

We determine when a convex body in $\mathbb{R}^d$ is the closed unit ball of a reasonable crossnorm on $\mathbb{R}^{d_1}\otimes\cdots \otimes\mathbb{R}^{d_l},$ $d=d_1\cdots d_l.$ We call these convex bodies ``tensorial bodies''. We prove that, among them, the only ellipsoids are the closed unit balls of Hilbert tensor products of Euclidean spaces. It is also proved that linear isomorphisms on $\mathbb{R}^{d_1}\otimes\cdots \otimes \mathbb{R}^{d_l}$ preserving decomposable vectors map tensorial bodies into tensorial bodies. This leads us to define a Banach-Mazur type distance between them, and to prove that there exists a Banach-Mazur type compactum of tensorial bodies.

Keywords: Convex body, tensor norm, Minkowski space, Banach-Mazur distance, tensor product of convex sets, linear mappings on tensor spaces.

MSC: 46M05, 52A21, 46N10, 15A69

[ Fulltext-pdf  (190  KB)] for subscribers only.