|
Journal of Convex Analysis 26 (2019), No. 3, 739--751 Copyright Heldermann Verlag 2019 Weak Compactness of Sublevel Sets in Complete Locally Convex Spaces Pedro Pérez-Aros Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Libertador Bernardo O'Higgins 611, Rancagua, Chile pedro.perez@uoh.cl Lionel Thibault Institut A. Grothendieck, Université de Montpellier, 34095 Montpellier 5, France lionel.thibault@umontpellier.fr [Abstract-pdf] We prove that if $X$ is a complete locally convex space and $f\colon X\to \mathbb{R}\cup \{+\infty \}$ is a function such that $f-x^\ast$ attains its minimum for every $x^\ast \in U$, where $U$ is an open set with respect to the Mackey topology in $X^\ast$, then for every $\gamma \in \mathbb{R}$ and $x^\ast \in U$ the set $\{ x\in X : f(x)- \langle x^\ast , x \rangle \leq \gamma\}$ is relatively weakly compact. This result corresponds to an extension of Theorem 2.4 in a recent paper of J.\,Saint Raymond [Mediterr. J. Math. 10(2) (2013) 927--940]. Directional James compactness theorems are also derived. Keywords: Convex functions, conjugate functions, inf-convolution, epi-pointed functions, weak compactness, inf-compact functions. MSC: 46A25, 46A04, 46A50 [ Fulltext-pdf (133 KB)] for subscribers only. |