Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Convex Analysis 25 (2018), No. 2, 435--458
Copyright Heldermann Verlag 2018



Segmentation and Inpainting of Color Images

Michele Carriero
Dip. di Matematica e Fisica, Università del Salento, Via Arnesano, 73100 Lecce, Italia
michele.carriero@unisalento.it

Antonio Leaci
Dip. di Matematica e Fisica, Università del Salento, Via Arnesano, 73100 Lecce, Italia
antonio.leaci@unisalento.it

Franco Tomarelli
Dip. di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italia
franco.tomarelli@polimi.it



We introduce and study a variational model for segmentation and inpainting of 2-dimensional color images. The model consists in the minimization of a functional dependent on second derivatives, free discontinuity and free gradient discontinuity. The competitors are piecewise C2 vector-valued functions, whose components represent the intensity of RGB channels.

Keywords: Calculus of variations, free discontinuity problems, regularity, inpainting, image segmentation, Gamma convergence.

MSC: 49J45, 49K20

[ Fulltext-pdf  (295  KB)] for subscribers only.