|
Journal of Convex Analysis 24 (2017), No. 4, 1281--1294 Copyright Heldermann Verlag 2017 Asymptotic Smoothness, Convex Envelopes and Polynomial Norms Raquel Gonzalo Dep. de Matemática Aplicada, Universidad Politécnica, Campus de Montegancedo, Boadilla del Monte, 28660 Madrid, Spain rngonzalo@fi.upm.es Jesús A. Jaramillo Instituto de Matemática Interdiscliplinar, Dep. de Análisis Matemático, Universidad Complutense, 28040 Madrid, Spain jaramil@mat.ucm.es Diego Yáńez Dep. de Matemáticas, Escuela de Ingenierías Industriales, Universidad de Extremadura, 06006 Badajoz, Spain dyanez@unex.es We introduce a suitable notion of asymptotic smoothness on infinite dimensional Banach spaces, and we prove that, under some structural restrictions on the space, the convex envelope of an asymptotically smooth function is asymptotically smooth. Furthermore, we study convexity and smoothness properties of polynomial norms, and we obtain that a polynomial norm of degree N has modulus of convexity of power type N. [ Fulltext-pdf (120 KB)] for subscribers only. |