|
Journal of Convex Analysis 24 (2017), No. 3, 927--953 Copyright Heldermann Verlag 2017 Polynomial Inequalities on the π/4-Circle Sector Gustavo da Silva Araújo Unidade Acadêmica de Ciências Exatas e da Natureza, Centro de Formação de Professores, Universidade Federal de Campina Grande, Cajazeiras, PB 58900-000, Brazil gdasaraujo@gmail.com Pablo Jiménez-Rodríguez Dep. de Análisis Matemático, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid, Spain pablo.jimenez.rod@gmail.com Gustavo A. Muñoz-Fernández Dep. de Análisis Matemático, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid gustavo_fernandez@mat.ucm.es Juan B. Seoane-Sepúlveda Dep. de Análisis Matemático, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid jseoane@mat.ucm.es [Abstract-pdf] A number of sharp inequalities are proved for the space ${\mathcal P}\left(^2D\left(\frac{\pi}{4}\right)\right)$ of 2-homogeneous polynomials on ${\mathbb R}^2$ endowed with the supremum norm on the sector $D\left(\frac{\pi}{4}\right) := \left\{e^{i\theta}:\theta\in \left[0,\frac{\pi}{4}\right]\right\}$. Among the main results we can find sharp Bernstein and Markov inequalities and the calculation of the polarization constant and the unconditional constant of the canonical basis of the space ${\mathcal P}\left(^2D\left(\frac{\pi}{4}\right)\right)$. Keywords: Bernstein and Markov inequalities, unconditional constants, polarizations constants, polynomial inequalities, homogeneous polynomials, extreme points. MSC: 46G25; 46B28, 41A44 [ Fulltext-pdf (832 KB)] for subscribers only. |