|
Journal of Convex Analysis 24 (2017), No. 2, 393--415 Copyright Heldermann Verlag 2017 Ekeland's Variational Principle for Vector Optimization with Variable Ordering Structure Truong Quang Bao Dept. of Mathematics and Computer Science, Northern Michigan University, 1401 Presque Isle Avenue, 1135 NSF Marquette, MI 49855, U.S.A. btruong@nmu.edu Gabriele Eichfelder Institut für Mathematik, Technische Universität, Postfach 10 05 65, 98684 Ilmenau, Germany gabriele.eichfelder@tu-ilmenau.de Behnam Soleimani Institut für Mathematik, Martin-Luther-Universität, Theodor-Lieser-Str. 5, 06120 Halle, Germany behnam.soleimani@mathematik.uni-halle.de Christiane Tammer Institut für Mathematik, Martin-Luther-Universität, Theodor-Lieser-Str. 5, 06120 Halle, Germany christiane.tammer@mathematik.uni-halle.de There are many generalizations of Ekeland's variational principle for vector optimization problems with fixed ordering structures, i.e., ordering cones. These variational principles are useful for deriving optimality conditions, ε-Kolmogorov conditions in approximation theory, and ε-maximum principles in optimal control. Here, we present several generalizations of Ekeland's variational principle for vector optimization problems with respect to variable ordering structures. For deriving these variational principles we use nonlinear scalarization techniques. Furthermore, we derive necessary conditions for approximate solutions of vector optimization problems with respect to variable ordering structures using these variational principles and the subdifferential calculus by Mordukhovich. [ Fulltext-pdf (197 KB)] for subscribers only. |