Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Convex Analysis 24 (2017), No. 1, 333--347
Copyright Heldermann Verlag 2017



A Note on the Extension of Continuous Convex Functions from Subspaces

Carlo Alberto De Bernardi
Dip. di Matematica, Università di Milano, Via C. Saldini 50, 20133 Milano, Italy
carloalberto.debernardi@gmail.com



[Abstract-pdf]

Let $Y$ be a subspace of a real normed space $X$. We say that the couple $(X,Y)$ has the {\em $\mathrm{CE}$-property} (``convex extension property'') if each continuous convex function on $Y$ admits a continuous convex extension defined on $X$. By using techniques of Johnson and Zippin, we prove the following results about the $\mathrm{CE}$-property: if $X$ is the $c_0(\Gamma)$-sum or the $\ell_p(\Gamma)$-sum ($1
Keywords: Convex function, extension, normed linear space.

MSC: 52A41; 26B25, 46A99

[ Fulltext-pdf  (179  KB)] for subscribers only.