Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Convex Analysis 24 (2017), No. 1, 135--148
Copyright Heldermann Verlag 2017



Regular Self-Proximal Distances are Bregman

Felipe Alvarez
Centro de Modelamiento Matemático, Dep. de Ingeniería Matemática, Universidad de Chile, Beauchef 851, Santiago, Chile

Rafael Correa
Centro de Modelamiento Matemático, Dep. de Ingeniería Matemática, Universidad de Chile, Beauchef 851, Santiago, Chile

Matthieu Marechal
Instituto de Ciencias Basicas, Facultad de Ingeniería, Universidad Diego Portales, Ejército 441, Santiago, Chile
matthieu.marechal@udp.cl



Bregman distances play a key role in generalized versions of the proximal algorithm. This paper proposes a new characterization of Bregman distances in terms of their gradient and Hessian matrix. Thanks to this characterization, we obtain two results: all the so called self-proximal distances are Bregman, and all the induced proximal distances, under some regularity assumptions, are Bregman functions.

[ Fulltext-pdf  (142  KB)] for subscribers only.