© 2016 Heldermann Verlag Journal of Convex Analysis 23 (2016) 893–920

P. J. Rabier

Dept. of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A. rabier@imap.pitt.edu

Integral Inequalities for Infimal Convolution and Hamilton-Jacobi Equations

Let $f, g : \mathbb{R}^N \to (-\infty, \infty]$ be Borel measurable, bounded below and such that inf $f + \inf g \ge 0$. We prove that with $m_{f,g} := (\inf f - \inf g)/2$, the inequality

$$||(f - m_{f,g})^{-1}||_{\phi} + ||(g + m_{f,g})^{-1}||_{\phi} \le 4||(f \Box g)^{-1}||_{\phi}$$

holds in every Orlicz space L_{ϕ} , where $f \Box g$ denotes the infimal convolution of fand g and where $||\cdot||_{\phi}$ is the Luxemburg norm (i.e., the L^p norm when $L_{\phi} = L^p$). Although no genuine reverse inequality can hold in any generality, we also prove that such reverse inequalities do exist in the form

$$|(f\Box g)^{-1}||_{\phi} \le 2^{N-1}(||(\check{f} - m_{f,g})^{-1}||_{\phi} + ||(\check{g} + m_{f,g})^{-1}||_{\phi}),$$

where \check{f} and \check{g} are suitable transforms of f and g introduced in the paper and reminiscent of, yet very different from, nondecreasing rearrangement.

Similar inequalities are proved for other extremal operations and applications are given to the long-time behavior of the solutions of the Hamilton-Jacobi and related equations.

Keywords: Brunn-Minkowski inequality, enclosing ball, Hamilton-Jacobi equations, infimal convolution, Orlicz space, rearrangement.

MSC: 26D15, 46E30, 35F25, 49L25