Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Convex Analysis 22 (2015), No. 2, 541--551
Copyright Heldermann Verlag 2015



Hausdorff Dimension of the Set of Endpoints of Typical Convex Surfaces

Alain Rivière
Laboratoire Amiénois de Mathématiques Fondamentales et Appliquées, CNRS -- UMR 7352, Faculté de Sciences d'Amiens, 33 rue Saint-Leu, 80 039 Amiens Cedex 1, France
Alain.Riviere@u-picardie.fr



We mainly prove that most d-dimensional convex surfaces Σ have a set of endpoints of Hausdorff dimension at least d/3. An endpoint means a point not lying in the interior of any shorter path in Σ. "Most" means that the exceptions constitute a meager set, relatively to the usual Hausdorff-Pompeiu distance. The proof employs some of the ideas used in a previous paper of the author [Hausdorff dimension of cut loci of generic subspaces of Euclidean spaces, J. Convex Analysis 14 (2007) 823-854] about a similar question. However, our result here is just an estimation about a still unsolved question, as much as we know.

Keywords: Cut locus, Hausdorff dimension, convex body.

MSC: 28A78, 28A80, 53C22, 54E52, 52A20

[ Fulltext-pdf  (154  KB)] for subscribers only.