|
Journal of Convex Analysis 21 (2014), No. 3, 857--886 Copyright Heldermann Verlag 2014 Proper Approximate Solutions and ε-Subdifferentials in Vector Optimization: Moreau-Rockafellar Type Theorems César Gutiérrez Dep. de Matemática Aplicada, Universidad de Valladolid, Paseo de Belén 15, Campus Miguel Delibes, 47011 Valladolid, Spain cesargv@mat.uva.es Lidia Huerga Dep. de Matemática Aplicada, Universidad Nacional de Educación a Distancia, Calle Juan del Rosal 12, Ciudad Universitaria, 28040 Madrid, Spain lhuerga@bec.uned.es Bienvenido Jiménez Dep. de Matemática Aplicada, Universidad Nacional de Educación a Distancia, Calle Juan del Rosal 12, Ciudad Universitaria, 28040 Madrid, Spain bjimenez@ind.uned.es Vicente Novo Dep. de Matemática Aplicada, Universidad Nacional de Educación a Distancia, Calle Juan del Rosal 12, Ciudad Universitaria, 28040 Madrid, Spain vnovo@ind.uned.es We provide Moreau-Rockafellar type theorems for a kind of proper ε-subdifferential of vector-valued mappings. For this aim, we introduce and study a new notion of approximate strong solution of a vector optimization problem, a new strong ε-subdifferential based on this type of approximate strong solutions, and a new regularity condition. Finally, as a consequence of the obtained exact sum rules, the gap between the strong and the proper ε-subdifferentials is provided. Keywords: Vector optimization, proper epsilon-efficiency, proper epsilon-subdifferential, nearly subconvexlikeness, strong epsilon-efficiency, strong epsilon-subdifferential, linear scalarization, epsilon-subdifferential. MSC: 90C48, 90C25, 90C29, 49J52, 49K27 [ Fulltext-pdf (239 KB)] for subscribers only. |