|
Journal of Convex Analysis 21 (2014), No. 3, 811--818 Copyright Heldermann Verlag 2014 On Completely Continuous Integration Operators of a Vector Measure José M. Calabuig Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain jmcalabu@mat.upv.es José Rodríguez Departamento de Matemática Aplicada, Facultad de Informática, Universidad de Murcia, 30100 Espinardo (Murcia), Spain joserr@um.es Enrique A. Sánchez-Pérez Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain easancpe@mat.upv.es [Abstract-pdf] Let $m$ be a vector measure taking values in a Banach space $X$. We prove that if the integration operator $I_m: L^1(m) \to X$, $I_m(f)=\int f \, dm$, is completely continuous and $X$ is Asplund, then $m$ has finite variation and $L^1(m) =L^1(|m|)$. Keywords: Integration operator, vector measure, completely continuous operator, Asplund space. MSC: 46E30, 46G10, 47B07 [ Fulltext-pdf (117 KB)] for subscribers only. |