|
Journal of Convex Analysis 21 (2014), No. 3, 765--783 Copyright Heldermann Verlag 2014 On Quasi-Gamma Functions Teresa Bermúdez Dep. de Análisis Matemático, Universidad de La Laguna, 38271 La Laguna - Tenerife, Spain tbermude@ull.es Antonio Martinón Dep. de Análisis Matemático, Universidad de La Laguna, 38271 La Laguna - Tenerife, Spain anmarce@ull.es Kishin Sadarangani Dep. de Matemáticas, Universidad de Las Palmas de Gran Canaria, Campus de Tafira Baja, 35017 Las Palmas de Gran Canaria, Spain ksadaran@dma.ulpgc.es [Abstract-pdf] We define the quasi-gamma functions as the functions $f: ]0,\infty[ \longrightarrow ]0,\infty[$ such that $f(1)=1$, $f(x+1)=xf(x)$ for every $x>0$, and $f$ is quasi-convex. The main example of quasi-gamma function is the gamma function defined by Euler. We study some properties of the quasi-gamma functions and of the class ${\emph Q}$ of these functions. Keywords: Gamma function, quasi-gamma function, quasi-convex function. MSC: 26A51, 33B15, 52A41 [ Fulltext-pdf (164 KB)] for subscribers only. |