Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Convex Analysis 20 (2013), No. 1, 253--264
Copyright Heldermann Verlag 2013



Best Constants in Poincaré Inequalities for Convex Domains

Luca Esposito
Dip. di Matematica e Informatica, Università di Salerno, Via Ponte Don Melillo, 84084 Fisciano, Italy
luesposi@unisa.it

Carlo Nitsch
Dip. di Matematica e Applicazioni, Università di Napoli, Complesso Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
c.nitsch@unina.it

Cristina Trombetti
Dip. di Matematica e Applicazioni, Università di Napoli, Complesso Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
cristina@unina.it



We prove a Payne-Weinberger type inequality for the p-Laplacian Neumann eigenvalues (p ≥ 2). The inequality provides the sharp upper bound on convex domains, in terms of the diameter alone, of the best constant in Poincaré inequality. The key point is the implementation of a refinement of the classical Pólya-Szegö inequality for the symmetric decreasing rearrangement which yields an optimal weighted Wirtinger inequality.

Keywords: Poincare inequality, p-Laplacian eigenvalues, Neumann boundary conditions.

MSC: 35B05, 47J05, 26D15

[ Fulltext-pdf  (134  KB)] for subscribers only.