|
Journal of Convex Analysis 20 (2013), No. 1, 253--264 Copyright Heldermann Verlag 2013 Best Constants in Poincaré Inequalities for Convex Domains Luca Esposito Dip. di Matematica e Informatica, Università di Salerno, Via Ponte Don Melillo, 84084 Fisciano, Italy luesposi@unisa.it Carlo Nitsch Dip. di Matematica e Applicazioni, Università di Napoli, Complesso Monte S. Angelo, Via Cintia, 80126 Napoli, Italy c.nitsch@unina.it Cristina Trombetti Dip. di Matematica e Applicazioni, Università di Napoli, Complesso Monte S. Angelo, Via Cintia, 80126 Napoli, Italy cristina@unina.it We prove a Payne-Weinberger type inequality for the p-Laplacian Neumann eigenvalues (p ≥ 2). The inequality provides the sharp upper bound on convex domains, in terms of the diameter alone, of the best constant in Poincaré inequality. The key point is the implementation of a refinement of the classical Pólya-Szegö inequality for the symmetric decreasing rearrangement which yields an optimal weighted Wirtinger inequality. Keywords: Poincare inequality, p-Laplacian eigenvalues, Neumann boundary conditions. MSC: 35B05, 47J05, 26D15 [ Fulltext-pdf (134 KB)] for subscribers only. |