Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Convex Analysis 19 (2012), No. 2, 355--384
Copyright Heldermann Verlag 2012



Notes on Extended Real- and Set-Valued Functions

Andreas H. Hamel
Dept. of Mathematical Sciences, Yeshiva University, 2495 Amsterdam Avenue, New York, NY 10033, U.S.A.
hamel@yu.edu

Carola Schrage
Institut für Mathematik, Martin-Luther-Universität, Theodor-Lieser-Straße 5, 06120 Halle, Germany
carola.schrage@mathematik.uni-halle.de



An order theoretic and algebraic framework for the extended real numbers is established which includes extensions of the usual difference to expressions involving -∞ and/or +∞, so-called residuations. New definitions and results for directional derivatives, subdifferentials and Legendre--Fenchel conjugates for extended real-valued functions are given which admit to include the proper as well as the improper case. For set-valued functions, scalar representation theorems and a new conjugation theory are established. The common denominator is that the appropriate image spaces for set-valued functions share fundamental structures with the extended real numbers: They are order complete, residuated monoids with a multiplication by non-negative real numbers.

Keywords: Extended real-valued functions, directional derivative, subdifferential, Fenchel conjugate, set-valued function, conlinear space, infimal convolution.

MSC: 49N15; 54C60, 90C46

[ Fulltext-pdf  (228  KB)] for subscribers only.