Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Convex Analysis 19 (2012), No. 1, 249--279
Copyright Heldermann Verlag 2012



Finitely Well-Positioned Sets

Massimo Marinacci
Department of Decision Sciences and Igier, Università Bocconi, Via Sarfatti 25, 20136 Milano, Italy
massimo.marinacci@unibocconi.it

Luigi Montrucchio
Collegio Carlo Alberto, Università di Torino, Via Real Collegio 30, 10024 Moncalieri, Italy
luigi.montrucchio@unito.it



We introduce and study finitely well-positioned sets, a class of asymptotically "narrow" sets that generalize the well-positioned sets recently investigated by S. Adly, E. Ernst and M. Thera [Commun. Contemp. Math. 4 (2001) 145-160; J. Global Optim. 29 (2004) 337-351], as well as the plastering property of M. A. Krasnoselskii ["Positive solutions of operator equations", Noordhoff, Groningen (1964)].

Keywords: Convex analysis, asymptotic cones, recession cones, plastering property.

MSC: 65K, 90C

[ Fulltext-pdf  (280  KB)] for subscribers only.