|
Journal of Convex Analysis 19 (2012), No. 1, 249--279 Copyright Heldermann Verlag 2012 Finitely Well-Positioned Sets Massimo Marinacci Department of Decision Sciences and Igier, Università Bocconi, Via Sarfatti 25, 20136 Milano, Italy massimo.marinacci@unibocconi.it Luigi Montrucchio Collegio Carlo Alberto, Università di Torino, Via Real Collegio 30, 10024 Moncalieri, Italy luigi.montrucchio@unito.it We introduce and study finitely well-positioned sets, a class of asymptotically "narrow" sets that generalize the well-positioned sets recently investigated by S. Adly, E. Ernst and M. Thera [Commun. Contemp. Math. 4 (2001) 145-160; J. Global Optim. 29 (2004) 337-351], as well as the plastering property of M. A. Krasnoselskii ["Positive solutions of operator equations", Noordhoff, Groningen (1964)]. Keywords: Convex analysis, asymptotic cones, recession cones, plastering property. MSC: 65K, 90C [ Fulltext-pdf (280 KB)] for subscribers only. |