Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Convex Analysis 18 (2011), No. 4, 999--1012
Copyright Heldermann Verlag 2011



A Universal Compactification of Topological Positively Convex Sets

Dieter Pumplün
Fakultät für Mathematik und Informatik, Fernuniversität, 58084 Hagen, Germany
dieter.pumpluen@fernuni-hagen.de



A topological positively convex set is a positively convex subset of a topological real linear space with the induced topology. Topological positively convex modules are a canonical generalization defined without the requirement to be a subset of a linear space. For any topological positively convex module or set there is a universal continuous positively affine mapping to a regularly ordered Saks space yielding the universal compactification.

[ Fulltext-pdf  (156  KB)] for subscribers only.