|
Journal of Convex Analysis 18 (2011), No. 4, 999--1012 Copyright Heldermann Verlag 2011 A Universal Compactification of Topological Positively Convex Sets Dieter Pumplün Fakultät für Mathematik und Informatik, Fernuniversität, 58084 Hagen, Germany dieter.pumpluen@fernuni-hagen.de A topological positively convex set is a positively convex subset of a topological real linear space with the induced topology. Topological positively convex modules are a canonical generalization defined without the requirement to be a subset of a linear space. For any topological positively convex module or set there is a universal continuous positively affine mapping to a regularly ordered Saks space yielding the universal compactification. [ Fulltext-pdf (156 KB)] for subscribers only. |