|
Journal of Convex Analysis 18 (2011), No. 3, 749--768 Copyright Heldermann Verlag 2011 Characterization of Weakly Efficient Solutions for Non-Regular Multiobjective Programming Problems with Inequality-Type Constraints Beatriz Hernández-Jiménez Depto Economía, Métodos Cuantitativos e Historia Económica, Area de Estadística e Investigación Operativa, Universidad Pablo de Olavide, Edificio 3 - Ctra Utrera - Km 1, 41013 Sevilla, Spain mbherjim@upo.es Marko A. Rojas-Medar Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Campus Fernando May, Chillán, Chile marko@ueubiobio.cl Rafaela Osuna-Gómez Departamento de Estadística e Investigación Operativa, Facultad de Matemáticas, Universidad de Sevilla, Aptdo. 1160, 41012 Sevilla, Spain rafaela@us.es Antonio Rufián-Lizana Departamento de Estadística e Investigación Operativa, Facultad de Matemáticas, Universidad de Sevilla, Aptdo. 1160, 41012 Sevilla, Spain rufian@us.es Necessary conditions of optimality are presented for weakly efficient solutions to multiobjective minimization problems with inequality-type constraints. These conditions are applied when the constraints do not necessarily satisfy any regularity assumptions and they are based on the concept of 2-regularity introduced by Izmailov. In general, the optimality conditions do not provide the complete weak Pareto optimal set, so 2-KKT-pseudoinvex problems are defined. This new concept of generalized convexity is both necessary and sufficient to guarantee the characterization of all weakly efficient solutions based on the optimality conditions and it is the weakest one. Keywords: Convexity, regularity, constraints qualifications, optimality conditions. MSC: 90C29, 90C46, 26B25, 46T20, 47J20 [ Fulltext-pdf (180 KB)] for subscribers only. |