Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Convex Analysis 18 (2011), No. 3, 687--698
Copyright Heldermann Verlag 2011



On the Infimum of a Quasiconvex Function over an Intersection. Application to the Distance Function

Juan-Enrique Martínez Legaz
Dep. d'Economia i d'Història Econòmica, Universitat Autònoma de Barcelona, 08193 Bellaterra - Barcelona, Spain
JuanEnrique.Martinez.Legaz@uab.es

Antonio Martinón
Dep. de Análisis Matemático, Universidad de La Laguna, 38271 La Laguna - Tenerife, Spain
anmarce@ull.es



[Abstract-pdf]

We give sufficient conditions for the infimum of a quasiconvex function $f$ over the intersection $\bigcap_{i\in I}R_{i}$ to agree with the supremum of the infima of $f$ over the $R_{i}$'s. We apply these results to the distance function in a normed space.

Keywords: Quasiconvex functions, distance to the intersection.

MSC: 54E35; 26-99

[ Fulltext-pdf  (142  KB)] for subscribers only.