|
Journal of Convex Analysis 17 (2010), No. 3&4, 827--860 Copyright Heldermann Verlag 2010 Abstract Results on the Finite Extinction Time Property: Application to a Singular Parabolic Equation Yves Belaud Laboratoire de Mathématiques et Physique Théorique, Faculté des Sciences et Techniques, Université François Rabelais, Parc de Grandmont, 37200 Tours, France belaud@lmpt.univ-tours.fr Jesús Ildefonso Díaz Dep. de Matemática Aplicada, Facultad de Matemáticas, Universidad Complutense, 28040 Madrid, Spain ji_diaz@mat.ucm.es [Abstract-pdf] We start by studying the finite extinction time for solutions of the abstract Cauchy problem $u_t+Au+Bu=0$ where $A$ is a maximal monotone operator and $B$ is a positive operator on a Hilbert space $H$. We use a suitable spectral energy method to get some sufficient conditions which guarantee this property. As application we consider a singular semilinear parabolic equation: $Au=-\Delta u$, $Bu=a(x)u^q$, $a(x) \geq 0$ bounded and $-1
|