Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Convex Analysis 17 (2010), No. 2, 651--658
Copyright Heldermann Verlag 2010



On Maximal Domains for C-Convex Functions and Convex Extensions

Manfred Möller
School of Mathematics, University of the Witwatersrand, Wits 2050, South Africa
Manfred.Moller@wits.ac.za

Thabang M. J. Nthebe
School of Mathematics, University of the Witwatersrand, Wits 2050, South Africa
Thabang.Nthebe@wits.ac.za



[Abstract-pdf]

\newcommand\dom{\operatorname{dom}} Let $f$ be a real valued function with the domain $\dom(f)$ in some vector space $X$ and let $\mathfrak{C}$ be the collection of convex subsets of $X$. The following two questions are investigated; 1. Do there exist maximal convex restrictions $g$ of $f$ with $\dom(g) \in \mathfrak{C}$? 2. If $f$ is convex with $\dom(f)\in \mathfrak{C}$, do there exist maximal convex extension $g$ of $f$ with $\dom(g)\in \mathfrak{C}$? We will show that the answer to both questions is positive under a certain condition on $\mathfrak{C}$.

Keywords: Convex extension, C-convex, maximal set, CUP.

MSC: 32E20, 35E10, 26A51, 46A55, 46S40, 52A41

[ Fulltext-pdf  (123  KB)] for subscribers only.