Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Convex Analysis 16 (2009), No. 3, 913--937
Copyright Heldermann Verlag 2009



Necessary Conditions for Nonsmooth Optimization Problems with Operator Constraints in Metric Spaces

Boris S. Mordukhovich
Dept. of Mathematics, Wayne State University, Detroit, MI 48202, U.S.A.
boris@math.wayne.edu

Libin Mou
Dept. of Mathematics, Bradley University, Peoria, IL 61625, U.S.A.
mou@bradley.edu



This paper concerns nonsmooth optimization problems involving operator constraints given by mappings on complete metric spaces with values in nonconvex subsets of Banach spaces. We derive general first-order necessary optimality conditions for such problems expressed via certain constructions of generalized derivatives for mappings on metric spaces and axiomatically defined subdifferentials for the distance function to nonconvex sets in Banach spaces. Our proofs are based on variational principles and perturbation/approximation techniques of modern variational analysis. The general necessary conditions obtained are specified in the case of optimization problems with operator constraints described by mappings taking values in approximately convex subsets of Banach spaces, which admit uniformly Gâteaux differentiable renorms (in particular, in any separable spaces).

Keywords: Variational analysis, generalized differentiation, optimization in metric spaces, necessary optimality conditions, approximately convex functions and sets.

MSC: 49J53, 49J52, 49K27, 90C48

[ Fulltext-pdf  (229  KB)] for subscribers only.