|
Journal of Convex Analysis 15 (2008), No. 3, 535--546 Copyright Heldermann Verlag 2008 Representation of the Polar Cone of Convex Functions and Applications Guillaume Carlier CEREMADE, Université Paris IX Dauphine, Pl. de Lattre de Tassigny, 75775 Paris 16, France carlier@ceremade.dauphine.fr Thomas Lachand-Robert Lab. de Mathématiques, Université de Savoie, 73376 Le Bourget-du-Lac, France Using a result of Y. Brenier [Comm. Pure Appl. Math. 44 (1991) 375--417] we give a representation of the polar cone of monotone gradient fields in terms of measure-preserving maps, or bistochastic measures. Some applications to variational problems subject to a convexity constraint are given. Keywords: Convexity constraint, Euler-Lagrange equation, measure-preserving maps, bistochastic measures. [ Fulltext-pdf (145 KB)] for subscribers only. |