|
Journal of Convex Analysis 15 (2008), No. 2, 201--214 Copyright Heldermann Verlag 2008 Ordered Non-Convex Quasi-Variational Sweeping Processes Nikolai V. Chemetov Universidade de Lisboa, Faculdade de Ciencias, Dep. de Matemática, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal chemetov@ptmat.fc.ul.pt Manuel D. P. Monteiro Marques Universidade de Lisboa, Faculdade de Ciencias, Dep. de Matemática, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal mmarques@ptmat.fc.ul.pt Ulisse Stefanelli Università di Pavia, Ist. di Matematica Applicata e Tecnologie Informatiche, Via Ferrata 1, 27100 Pavia, Italy ulisse.stefanelli@imati.cnr.it [Abstract-pdf] This paper addresses the Cauchy problem for the quasi-variational sweeping process in the ordered Hilbert space $H$ \begin{equation*} -u^{\prime}(t) \in N_{C(t,u(t))}(u(t)) \quad \text{for a.e. $\, t \in (0,T),$% } \ \ u(0)=u_0, \end{equation*} where the set $\, C(t,u(t)) \subset H \,$ is non-convex and $\, N_{C(t,u(t))} \,$ denotes its normal cone. We provide an existence result based on the classical implicit time-discretization procedure and on a fixed point argument in ordered spaces. Keywords: Sweeping process, non-convex sets, orders in Hilbert spaces. MSC: 34A60, 34G25, 47J20 [ Fulltext-pdf (163 KB)] for subscribers only. |