Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Convex Analysis 13 (2006), No. 3, 711--719
Copyright Heldermann Verlag 2006



Weak-Star Convergence of Convex Sets

Simon P. Fitzpatrick

Adrian S. Lewis
ORIE, Cornell University, Ithaca, NY 14853, U. S. A.
aslewis@orie.cornell.edu



[Abstract-pdf]

We show that if a Banach space $X$ is weakly compactly generated and $C$, $C_n$ are weak-star-closed bounded convex nonempty subsets of the dual space $X^*$, then the support functionals $\delta^*_{C_n}$ converge to $\delta^*_C$ pointwise on $X$ if and only if the sequence $(C_n)$ is uniformly bounded with weak-star limit $C$.

Keywords: Scalar convergence, weak-star convergence, set convergence, weakly compactly generated.

[ Fulltext-pdf  (271  KB)] for subscribers only.