|
Journal of Convex Analysis 13 (2006), No. 3, 687--694 Copyright Heldermann Verlag 2006 Global Maximum of a Convex Function: Necessary and Sufficient Conditions Emil Ernst Lab. de Modélisation en Mécanique et Thermodynamique, Université Paul Cezanne, Fac. des Sciences et Techniques, Casse 322, Av. Esc. Normandie-Niemen, 13397 Marseille Emil.Ernst@univ.u-3mrs.fr Michel Théra LACO, Université de Limoges, 123 Avenue A. Thomas, 87060 Limoges, France michel.thera@unilim.fr We prove that an extended-real-valued lower semi-continuous convex function Φ defined on a reflexive Banach space X achieves its supremum on every nonempty bounded and closed convex set of its effective domain Dom Φ, if and only if the restriction of Φ to Dom Φ is sequentially continuous with respect to the weak topology on the underlying space X. Keywords: Global maximum of a convex function, optimality conditions. [ Fulltext-pdf (228 KB)] for subscribers only. |