Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Convex Analysis 12 (2005), No. 1, 239--253
Copyright Heldermann Verlag 2005



Γ Convergence of Hausdorff Measures

Giuseppe Buttazzo
Dip. di Matematica, Università di Pisa, Via Buonarroti 2, 56127 Pisa, Italy
buttazzo@dm.unipi.it

Benjamin Schweizer
Inst. Angewandte Mathematik, Universität Heidelberg, INF 294, 69120 Heidelberg, Germany
schweizer@iwr.uni-heidelberg.de



[Abstract-pdf]

\def\H1{\mathcal{H}^1} We study the dependence of the Hausdorff measure $\H1_d$ on the distance $d$. We show that the uniform convergence of $d_j$ to $d$ is equivalent to the $\Gamma$ convergence of $\H1_{d_j}$ to $\H1_d$ with respect to the Hausdorff convergence on compact connected subsets. We also consider the case when distances are replaced by semi-distances.

[ Fulltext-pdf  (446  KB)] for subscribers only.