Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article
 


Journal of Convex Analysis 12 (2005), No. 1, 197--212
Copyright Heldermann Verlag 2005



A Comparison Principle and the Lipschitz Continuity for Minimizers

Carlo Mariconda
Dipartimento di Matematica Pura e Applicata, Universita di Padova, 7 Via Belzoni, 35131 Padova, Italy
maricond@math.unipd.it

Giulia Treu
Dipartimento di Matematica Pura e Applicata, Universita di Padova, 7 Via Belzoni, 35131 Padova, Italy
treu@math.unipd.it



We give some conditions that ensure the validity of a Comparison Principle for the minimizers of integral functionals, without assuming the validity of the Euler-Lagrange equation. We deduce a weak Maximum Principle for (possibly) degenerate elliptic equations and, together with a generalization of the Bounded Slope Condition, a result on the Lipschitz continuity of minimizers.

Keywords: Comparison Principle, Maximum Principle, variational equation, Euler-Lagrange equation, elliptic equation, Bounded Slope Condition, regularity of minimizers.

MSC: 35A15; 35B05 35B50, 35J20, 46B99

[ Fulltext-pdf  (424  KB)] for subscribers only.