|
Journal of Convex Analysis 12 (2005), No. 1, 197--212 Copyright Heldermann Verlag 2005 A Comparison Principle and the Lipschitz Continuity for Minimizers Carlo Mariconda Dipartimento di Matematica Pura e Applicata, Universita di Padova, 7 Via Belzoni, 35131 Padova, Italy maricond@math.unipd.it Giulia Treu Dipartimento di Matematica Pura e Applicata, Universita di Padova, 7 Via Belzoni, 35131 Padova, Italy treu@math.unipd.it We give some conditions that ensure the validity of a Comparison Principle for the minimizers of integral functionals, without assuming the validity of the Euler-Lagrange equation. We deduce a weak Maximum Principle for (possibly) degenerate elliptic equations and, together with a generalization of the Bounded Slope Condition, a result on the Lipschitz continuity of minimizers. Keywords: Comparison Principle, Maximum Principle, variational equation, Euler-Lagrange equation, elliptic equation, Bounded Slope Condition, regularity of minimizers. MSC: 35A15; 35B05 35B50, 35J20, 46B99 [ Fulltext-pdf (424 KB)] for subscribers only. |