|
Journal of Convex Analysis 11 (2004), No. 2, 413--436 Copyright Heldermann Verlag 2004 The Hamilton-Jacobi Equation of Minimal Time Control F. H. Clarke Institut Girard Desargues, Universite Lyon I, 21 Av. Claude Bernard, 69622 Villeurbanne, France, clarke@igd.univ.lyon1.fr C. Nour Institut Girard Desargues, Universite Lyon I, 21 Av. Claude Bernard, 69622 Villeurbanne, France, chadi@igd.univ.lyon1.fr We study the solutions of the Hamilton-Jacobi equation that arise in connection with minimal time control, in a new global framework. These solutions, for which we establish existence using the minimal time function as a function of two variables, turn out to be closely related to time-geodesic trajectories. Keywords: minimal time function, viscosity solutions, geodesic trajectories, proximal analysis, monotonicity of trajectories, nonsmooth analysis. FullText-pdf (616 KB) for subscribers only. |