Journal Home Page
Cumulative Index
List of all Volumes
Complete Contents of this Volume
Previous Article
Next Article
|
|
Journal of Convex Analysis 10 (2003), No. 2, 389--408
Copyright Heldermann Verlag 2003

Hölder Continuity for Local Minimizers of a Nonconvex Variational Problem
Giovanni Cupini
Dip. di Matematica, Università di Firenze, Viale Morgagni 67/A, 50134 Firenze, Italy,
cupini@math.unifi.it
Anna Paola Migliorini
Dip. di Matematica, Università di Firenze, Viale Morgagni 67/A, 50134 Firenze, Italy,
amiglior@math.unifi.it

We consider integral functionals of the Calculus of Variations where the
energy density is a continuous function with p-growth, p > 1, uniformly
convex at infinity with respect to the gradient variable. We prove that local
minimizers are a-Hölder continuous for all
a < 1.
Keywords: local minimizer, regularity, nonconvex functional.
MSC 1991: 49N60, 35J20.
FullText-pdf (503 K)
|