|
Journal of Convex Analysis 10 (2003), No. 2, 389--408 Copyright Heldermann Verlag 2003 Hölder Continuity for Local Minimizers of a Nonconvex Variational Problem Giovanni Cupini Dip. di Matematica, Università di Firenze, Viale Morgagni 67/A, 50134 Firenze, Italy, cupini@math.unifi.it Anna Paola Migliorini Dip. di Matematica, Università di Firenze, Viale Morgagni 67/A, 50134 Firenze, Italy, amiglior@math.unifi.it We consider integral functionals of the Calculus of Variations where the energy density is a continuous function with p-growth, p > 1, uniformly convex at infinity with respect to the gradient variable. We prove that local minimizers are a-Hölder continuous for all a < 1. Keywords: local minimizer, regularity, nonconvex functional. MSC 1991: 49N60, 35J20. FullText-pdf (503 K) |