|
Journal of Convex Analysis 10 (2003), No. 1, 265--273 Copyright Heldermann Verlag 2003 Convex Bodies of Optimal Shape G. Carlier Université Paris IX Dauphine, Ceremade, Place de Lattre de Tassigny, 75775 Paris Cedex 16, France, carlier@ceremade.dauphine.fr T. Lachand-Robert Université Pierre et Marie Curie, Laboratoire d'Analyse Numérique, 75252 Paris Cedex 05, France, lachand@ann.jussieu.fr [Abstract-pdf] Given a continuous function f : Sn-1 --> R, we consider the minimization of the functional Integral over partial A of f (nA) dHn-1 with respect to the subset A of Rn, included in a class of convex bodies defined by surface or shape conditions. This corresponds to non-parametric formulations of older problems, including Newton's problem of the body of minimal resistance, following an approach due to G. Buttazzo and P. Guasoni [J. Convex Analysis 4 (1997) 343--351]. We establish existence and uniqueness results and some characterizations of the minimizers. FullText-pdf (307 K) |