Journal Home Page
Cumulative Index
List of all Volumes
Complete Contents of this Volume
Previous Article
Next Article
|
|
Journal of Convex Analysis 10 (2003), No. 1, 109--127
Copyright Heldermann Verlag 2003

Positively Convex Modules and Ordered Normed Linear Spaces
Dieter Pumplün
Fachbereich Mathematik, Fernuniversität, 58084 Hagen, Germany,
dieter.pumpluen@fernuni-hagen.de

A positively convex module is a
non-empty set closed under positively convex combinations but not
necessarily a subset of a linear space. Positively convex modules
are a natural generalization of positively convex subsets of
linear spaces. Any positively convex module has a canonical
semimetric and there is a universal positively affine mapping
into a regularly ordered normed linear space and a universal
completion.
MSC 2000: 52A05, 52A01, 46B40, 46A55.
FullText-pdf (495 K)
|