|
Journal of Convex Analysis 09 (2002), No. 2, 415--428 Copyright Heldermann Verlag 2002 Critical Point Theory for Vector Valued Functions Marco Degiovanni Dip. di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via Dei Musei 41, 25121 Brescia, Italy m.degiovanni@dmf.unicatt.it Roberto Lucchetti Dip. di Matematica, Politecnico di Milano, Via Bonardi 7, 20133 Milano, Italy rel@komodo.ing.unico.it Nadezhda Ribarska Dept. of Mathematics and Informatics, Sofia University, James Bourchier Boul. 5, 1126 Sofia, Bulgaria ribarska@fmi.uni-sofia.bg We consider a continuous function defined on a metric space with values in a Banach space endowed with an order cone. In this setting, we provide an extension of min-max techniques, such as the Mountain pass theorem and Ljusternik-Schnirelman theory, without assuming the order cone to have nonempty interior. Keywords: Vector optimization, nonsmooth critical point theory. MSC: 49J40; 58E05 [ Fulltext-pdf (388 KB)] |