|
Journal of Convex Analysis 09 (2002), No. 1, 245--258 Copyright Heldermann Verlag 2002 Nonlinear Energy Forms and Lipschitz Spaces on the Koch Curve Raffaela Capitanelli Dip. di Metodi e Modelli Matematici per le Scienze Applicate, Università di Roma I, Via A. Scarpa 16, 00161 Roma, Italy raffaela.capitanelli@uniroma1.it Maria Rosaria Lancia Dip. di Metodi e Modelli Matematici per le Scienze Applicate, Università di Roma I, Via A. Scarpa 16, 00161 Roma, Italy lancia@dmmm.uniroma1.it [Abstract-pdf] We consider the nonlinear convex energy forms ${\Cal E}^(p)$ on the Koch curve $K$ and we prove that the corresponding domains coincide with the spaces {\it Lip}$_{\alpha, D_f} (p, \infty, K)$. Then we give a precise interpretation of the smoothness index $\alpha$ in terms of the structural constants of the fractal. Keywords: Nonlinear convex energy forms, fractals, Lipschitz spaces. [ Fulltext-pdf (380 KB)] |