Journal Home Page

Cumulative Index

List of all Volumes

Complete Contents
of this Volume

Previous Article

Next Article


Journal of Convex Analysis 08 (2001), No. 2, 349--368
Copyright Heldermann Verlag 2001



Regularity of Minimizers for a Class of Anistropic Free Discontinuity Problems

Nicola Fusco
Dip. di Matematica, Universitą di Napoli, Complesso Monte S. Angelo, 80126 Napoli, Italy

Giuseppe Mingione
Dip. di Matematica, Universitą di Parma, Via Massimo D'Azeglio 85/A, 43100 Parma, Italy

Cristina Trombetti
Dip. di Matematica, Universitą di Napoli, Complesso Monte S. Angelo, 80126 Napoli, Italy



This  paper contains existence and regularity results for solutions u from Ω to (Rn)N of a class of free discontinuity problems i. e.: the energy to minimize consists of both a bulk and a surface part. The main feature of the class of problems considered here is that the energy density of the bulk part is supposed to be fully anisotropic with p-growth in the scalar case, n = 1. Similar results for the vectorial case n >1 are obtained for radial energy densities, being anisotropic again with p growth.

[ Fulltext-pdf  (483  KB)]