|
Journal of Convex Analysis 08 (2001), No. 1, 127--148 Copyright Heldermann Verlag 2001 A Characterization of Convex and Semicoercive Functionals Samir Adly LACO, Université de Limoges, 123 Avenue A. Thomas, 87060 Limoges, France Emil Ernst Institute of Mathematics, Romanian Academy of Sciences, 70700 Bucharest, Romania Michel Théra Université de Limoges, 123 Avenue A. Thomas, 87060 Limoges, France We prove that every proper convex and lower semicontinuous functional Φ defined on a real reflexive Banach space X is semicoercive if and only if every small uniform perturbation of Φ attains its minimum value on X. Keywords: Convex analysis, barrier cone, support functional, recession analysis, semicoercive functional. MSC: 49J40 [ Fulltext-pdf (542 KB)] |